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For the determination of saddle points (SPs) of adiabatic potential  surfaces 
a novel method defining a "pseudo reaction path"  (PRP) is presented. The 
PRP consists of two components ,  the one is being the function of some 
selected "guiding" coordinates and the other is depending on the remaining 
ones. The tangent components  of the PRP are parallel and antiparallel to 
the normals of the tangential planes of the equipotential surfaces defined by 
the two groups of coordinates. PRPs starting f rom points in an appropriately 
chosen domain of the configurational space arrive at the SP. 
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1. Introduction 

For the theoretical study of chemical reactions the best way is so far based upon 
the investigation of adiabatic potential  energy hypersurfaces constructed as 
functions of nuclear coordinates using the Born -Oppenhe imer  approximation.  
The various domains, critical points and surface curves of the adiabatic energy 
function are of different importances from the viewpoint of the reaction system. 
The surface can - on the basis of its local curvature p r o p e r t i e s -  be parti t ioned 
into domains of different reactivities [1], "ca tchment  regions" [2] determining 
the direction of the reaction, critical points whose classification is possible by 

* A preliminary account of this work was presented at the International Quantum Chemistry 
Seminar, Gy6r, August 16-18, 1982. 
** Author to whom reprint requests and correspondence should be addressed. 
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the examination of the harmonic force constant matrix [3, 4, 16], and surface 
curves along which the reaction takes place [5-21]. These characterist ics-  with 
the exception of extrema - are generally not invariant under coordinate transfor- 
mations in Euclidean coordinate spaces thus their determinations give no unam- 
biguous solutions. Efforts have therefore been made to define these properties 
in a coordinate-free form [5-17, 20-22]. Beside several well-known methods 
for localization of minima/maxima [23-32] there are useful procedures also for 
determining SPs [3, 4, 20, 33-44]. 

In this paper a searching procedure, characterized by gradient controlled step- 
directions, converging to the SP of the adiabatic potential energy surface is 
presented. In Chap. 2 some essential characteristics of potential surfaces in 
Riemannian space will be described a n d -  by referring mostly to Fukui's results 
[5-17, 21] - some fundamental relations to be employed in latter considerations 
will be introduced. In Sec. 3.1 the differential equat ion/equat ion system defining 
the PRP in a normal/critical point of the coordinate space will be presented for 
the ideal case, and in Sec. 3.2 the approximation of the SP occurring in practice 
will be discussed. 

2. General Theory 

The adiabatic potential energy of a molecular system as a function of nuclear 
coordinates is described mainly either in the system of mass-weighted Cartesian 
coordinates of nuclei [45] o r -  for many cases more pract ical ly-  in the system 
of independent "internal coordinates" relevant from the physical point of view 
[2, 5-17]. 

To investigate the changes of coordinates independently, we are going to study 
the course of searching in the Riemannian configuration space of internal coordi- 
nates, by using the general notation convention of tensor algebra [46]. 

An elementary displacement belonging to the dq i coordinate differential of 
contravariant character ~ is represented in the Cartesian coordinate system by a 
displacement vector 

3 N  OX t 
dx  = Y~ - -  dq'.  (1) 

t = l  Off i 

Both the 3N-dimensional  (N is the number of nuclei) Euclidean coordinate 
space and the n = 3N- 6(5)- dimensional Riemannian coordinate space can be 
completed by an additional coordinate, the "function value" U: 

U ( x l ,  x2 . . . . .  x3N)= U (ql ,  q2 , . . .  , q n ) =  x3N+i (2) 

t For indexing coordinates, the convention [46] is used that the superscripts refer to contravariant 
and the subscripts to covariant transformation properties. 
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which is invariant under the allowed coordinate transformations.  The square of 
the arc length is naturally identical in both spaces: 

2 ds  2 = d x  2 + d x  2 +" �9 �9 +dx3N+l = a i f l q i d q  j +dx3N+12 

where 

3 N  OX t OX t 
aq = Y~ = eie i t=l 3q i Oq / 

(3) 

are the covariant components  of the metric tensor and el are local basis vectors. 
A possible geometrical  structure of the adiabatic potential  energy function 
U ( q l ,  q2  . . . . .  q " )  is determined by the extrema [5]. It is known that Fukui 's  
m e t a - I R C  [5, 7-9] is a curve whose tangent is, in every point, the element  of 
the gradient field and on proceeding toward the stable position the displacement 
vector is directed antiparallel to the gradient. According to the "stable limit 
theorem"  [7] such a mot ion should converge to the eigenvector of the least 
absolute value of the hessian belonging to the extremum, i.e. to the weakest  
normal vibrational mode  at the stable equilibrium configuration. 

Now we wish to study the conditions and the progression of a combined motion 
starting f rom the point P~  Cell (C)[7, 9] toward the SP along a pseudo-RP 
(PRP) 2 to be defined later (here Cell (C) denotes the set of points starting f rom 
where the minimum C can be reached along the meta- IRC) .  We presume that 
in most  cases chemical experiences and /o r  "intuit ion" provide sufficient informa- 
tion to judging right the position of P relative to SP, with respect to only a few 
but relevant coordinates. The coordinates whose changes r e su l t -  in the course 
of approaching the S P - i n  an increase of the potential,  should be ranged into 
group A (group of "guiding" coordinates), and - in an ideal case - all the remain-  
ing coordinates, i.e. those lowering the potential,  into group B. As we can never  
be sure in the proper  classification of coordinates, we only presume that the 
coordinates have properly been ranged 3 into the group A, however,  we don ' t  
know whether  all the coordinates increasing the potential  by approaching the 
SP are actually included in this group. This means that our model a l lows-  
between certain l imi t s -  the misclassification of some potential  increasing coor- 
dinates into the group B. It is now evident that the point P ~ Cell (C) satisfies 
also the relation P c  Cell (8P1,2) where Cell (SP1,2) means  the interval of the 
configuration space f rom w h i c h -  regarding a given classification of the coordi- 
nates into groups A and B, i.e. by an actual definition of the P R P -  the SP 
associated with the minima 1, 2 can be reached along the PRP. 

PRP has the meaning that no real system moves along this curve under natural circumstances 
though such a motion could in principle be realized e.g. by continuously tuned selective laser 
excitations. 
3 Convergence of the procedure will verify the right ranging into groups (see latter discussion). 
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The curves assigned to the changes of group A and group B coordinates 4 are 
defined by differential equations similarly as in [5]: 

dql dq2 dqk 
aU/aq~ - aU/aq2 . . . . .  aU/aqk (4) 

and 

dqk+l dqk+2 dqn 
- ( a U / a q  k+~) - _ ( o U / O q ~ %  . . . . .  _ ( a U / a q . )  �9 

(5) 

The solutions of Eqs. (4) and (5) depending upon ( k -  1) and ( n - k -  1) para- 
meters are the curves given by Eq. (4, 7) in [5]. Exactly in the same way as in 
[5] new local coordinates q; can be defined by the tangents of the curves satisfying 
the differential Eqs. (4) and (5). The kth and nth coordinates-one in each 
group-fulfilling the conditions (4, 12) in [5] can arbitrarily be chosen. With 
respect to the new 41 coordinates, only (the last) one of the gradient components 
in each group will not vanish: 

oU au  au ou 
04--i = a4---~ . . . . .  ~ = 0, a4 ~ -# 0 (6) 

and 

au au au  au  
0 - ~  = 0 - ~  . . . . .  0 g v = o ,  04o ~o. (7) 

Consequently, the coordinates qt, q2 , . . .  , qk-1 and qk+~, qk+2,...  , q"-~, i.e. 
the curves (4, 7) in [5] - being the functions of group A and group B coordinates - 
are in the equipotential surfaces described by the functions 

U ( q t ,  q2 . . . . .  qk, o k + l ,  Q k + 2  . . . . .  o n )  = W,  (8)  

U ( Q 1 ,  0 2, . . . ,  O n, qk+l ,  q k + 2 , . . .  , q " )  = W (9)  

where Q~, Q2 . . . . .  Q" are constant values of coordinates and W is the function 
value of U in the given point. The parametric equations of the curves satisfying 
the differential Eqs. (4) and (5) are given by 

dq, oS /IdUI 
d~,~ = 0-7/Ja--~Ai (10) 

and 

dq,,, o g / I d S  I 
ds, ,  = - ~ q ~ " /  l ~ l  (11) 

4 For the two groups of coordinates, instead of i = 1, 2 , . . . ,  n, the indices i ' =  1, 2 , . . . ,  k and 
i" = k + 1, k + 2 , . . . ,  n will also be used. Through the allowed permutat ions of indices it can be 
realized that the coordinate group A should be indexed by i' and the group B by i". 
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T h e E q s . ( 1 0 )  a n d ( l l ) c a n b e d e r i v e d f r o m t h e e q u a t i o n s  

d U  OU ~ '  
--  ,t 

~ A  3q' ~ A  

and 

d U  OU ~ i "  
dSB--Oq i" dsB 

(12) 

(13) 

(or f rom their covarlant counterparts)  and f rom the differential propert ies of 
inverse functions. In these equations the meanings of dSA and dsB are as follows: 

dsa = 4ai,r dq i' dq r, (14) 

dsn = ~/ai,,r, dq ~" dq r. (15) 

For the sake of latter discussion it is important  to note that the union {e~,} u {er} 
of the local bases belonging to the groups of coordinates A and B are identical 
to the local basis systems of the complete (n-dimensional) coordinate space but 
their dual bases {~i'}; {~e,} are not the same as the corresponding elements (el'; 
e i~ of the dual basis system {e i} belonging to {ei}. The contravariant  metric 
tensors di'J'; ~r'r' are chosen to be the inverts of only the blocks of the metric 
tensor belonging to the indices (i', i") 5 to keep the dual basis vectors in the space 
of {r and {ei,}, therefore for group A coordinates the following relations are 
valid6: 

dqi (1') = ai/ dq i', 

dqi, = ai,r dq r, 

dqi, = dq, (j'), 

dq" = a ' dqi,, 

dq" = a~'~' dqj,. 

Owing to the covariant representat ion of curves given by (10) and (11), it can 
be assured that the displacement is parallel or antiparallel to the vectors of the 
gradient field belonging to the groups A and B coordinates at any differentiable 
point of the U(q ~) surface and they are therefore orthogonal to the equipotential  
surfaces (8) and (9). 

3. The Method 

3.1. Approximation of the SP in the Ideal Case 

Let us now return to our original aim, to examine the behaviour of a c u r v e -  
parametrical ly defined in covariant r ep resen ta t ion-c ross ing  the point P c  

5 The fact that these metric tensors depend either on group A or on group B coordinates is 
reflected by barred notations ~i', ~tef and gr,, de'i". 
6 For group B coordinates quite similar expressions (with double primes) hold. 
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Cell (C) and Pc  Cell (SPa,2). In this section momentarily-in contrast to our 
former assumptions - we suppose that ranging of coordinates into groups A and 
B has been properly performed, and then we present the differential equations 
of PRP in normal and critical points of the coordinate space. 

The components are given by Eqs (10) and (11). First we renorm the components, 
introducing in place of dSA and dSB the arc de: 

de = a~i(dq i'_ dq e')(dqr- dqr), (16) 

dqi, dsa=[~.~Ui, / dU ]dsa dqi, 
dSA dg LOq"/Idsal.I de = de' (17) 

dqi,, d s ,= tOU/ ldU]]  dSB dqi; 
(18)  

dsB de tz--~,,,/~--~tOq "/IdsslJ d-T = de" 

The PRP is now defined by the equation 

dq._j=dqi, dqe,= OU/Oq ~' dSA OU/Oq r' dsB 
de de de ]dU/dsA[ de ]dU/ds~l d}" 

(19) 

The (local) inclination of the curve (19) to the meta-IRC (Eq. (3.10) in [7]) at 
a given point can be got with help of the scalar product of the tangents. 

The inclinatio n angles of Eqs. (10), (11) and (19) to the meta-IRC are: 

COS ~0A = 

aJp(-aPk~~-~)( arrdqr'~dg ] 

~/(aqdqidqA[ i,rdqi'dqr~ 
dSA 
ds 

dU/dsa 
- (20)  

dU/ds ' 

dsB dU/dsB (21) 
COS ~ B  = ~ = ds dU/ds ' 

COS qgpR P = 

/ o~dq~\( rrdqr _,,,,,dq,,,\ 
a,~,~ - a --~-s ) ~ d --~s - a - ~  } 

~faq-~dq' ~/aij(dq-~'g dqi'~(dqJ'dg ' \ dg dqr'~--~ ] 

ds 2 + ds 
d s ~ =  ( _  COS2 @A-I-COS 2 (,PB) d-'~. (22) 

dsdg 

Using these results, Eq. (19) can be transcribed into 

dq_ 2 = ~U/aq ~' ds oU/Oq ~" ds 
d~ IdU/dsAI c o s , c A  ds IdU/ds,,I cos  ~B ds" 

(23) 
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The directions of the tangents of the two components of the curve described by 
Eq. (23) either are parallel or one of them (or both) are antiparallel to the 
directions of the components of the meta-IRC (in our case only the one com- 
ponent has opposite direction to the corresponding component of the meta-IRC). 
At the critical points, owing to the equalities 

OU dU O, 
 =ds = 

the PRP is defined by a second order differential equation system derived from 
Eq. (23) by virtue of L'H6pitals theorem: 

O~U dq ] Ms 02U dq ] Ks 
dq' Oq/-~qj ~ cos CA ~-~ - -  ~--g cos q~B ' 3qi"Oqj -~ 

ds d2U dsA d2U dsB 
ds2A dg ds 2 dg 

(24) 

Regarding that the components d@/dg and dqe,/dg are independent, and 
using the expressions (20) and (21), (24) can be separated to two equations: 

and 

O2U dq i ds d2U ds dq i 
Oq i' Oq i dg cos ~A -d-~ "t- ds--~a cos (~A d-~ ai,i dg 

_ (  0 ~ .  d2U ~ dq' 
\Oq 'Oq' ~S2A ai'/) ~ =  0 (24a) 

02U dq ] ds d2U ds dq i 
COS ff'B Oqi"Oq i dsB dg ds 2 cos ~B dg ai'i dg 

/ 02U d2U ~ dq j 
Oqi" Oq ' ~ ai"iJ --d-g-s = 0" (24b) 

By combining (24a) and (24b) we obtain 

( 02U. d2U d2U \ d q  j 
Oq~Oq ' ds 2 ai'i+~s2B ai"q-~=O" (25) 

The curve (23) satisfying the equation system (25) apparently does not converge 
to any eigenvectors of the hessian but to a curve whose tangent is transformed 
by the hessian (belonging to the critical point) in such a way that one of its 
components turns into its multiple by g a (  = d2U/ds2A) and the other into its 
multiple by -KB( = d2U/dsZB). 

The asymptote approximated by the PRP at the SP and the parameters of the 
equation system (25), i.e. the second derivatives of U, can be obtained by the 
following considerations. Starting from any Xo point, the changes of the gradient 
and the gradient components in the eigenvector system of the hessian are 
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described by the formulas: 

OI~176 V~--.~Ui -- ~ V ~  A - -  
\ 3q - /  

[$O= gO =--gB(Xo) = V~B OOqi U, 

OU 
Oq i' (26) 

(27) 

1 T 0U a =g l=gA(Xl )=  V A{t+V (28) 

131 = g l  =--gB(Xl)= V~B{I§ VrAV[CA~A(')--CBNB(')]}~--~(Xo), (29) 

g = V { I +  vTAV[cA~i~A(')--CB~)B(')]} (Xo). (30) 

Beside the notations already introduced V denotes the matrix consisting of 
eigenvector columns defined in the space of the coordinates ql, ~A and ~B are 
operators which perform projections in the coordinate spaces A and B, A is the 
diagonal matrix of the eigenvalues of the hessian, I is the unit matrix, the 
superscript T refers to the transpose and 

=(d2U_ dEU "-t'~ 
(31) cA ' 

CB : ( d 2 U +  M2U],.~-I 
(32) 

',ds  " 

The coefficients CA and CB are obtained from the following considerations. By a 
suitable classification of the coordinates, the displacement along both components 
of the curve described by Eq. (23) takes place in the direction of gradient 
decrease. By the displacement taken in the direction of potential increase, the 
second derivative KA satisfies the relation 

dEU d2U 
dS2A ds 2 < A -  (33) 

By the displacement taken in the direction of potential decrease, similar condition 
is to be fulfilled for KB: 

d2U 
d 2 U < k b A ; . ( b = l ,  , n - l )  (34) 

ds~ ~- ds~ "'" 

A- and A~- denote the negative and ( n -  1) positive eigenvalues of the hessian 
and kb are the coordinates of the displacement vector in the space of eigenvectors 
belonging to the positive eigenvalues. 

Now, for simplifying the Eqs. (28)-(30), it is practical to introduce the operator 

fR := {I + Vr  A V[CA~A( �9 )--CB808( .)]}. (35) 
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The repeated displacements along the PRP, for successive gradient components, 
yield the following general formulas 7 

oU 
g"~ = VJ~" ~ (x0). (38) 

In the points of the curve, the cosines of the angles included by the components 
(in the groups A and B) of the direction vector and the gradient at the.point x0 
can be represented by 

o ( - a ~ 1 7 6  "~176 ( - - g ~ 1 7 6  
COS,pA -- 1_~o_13Ollo?1 -- i_gollV/~Ago[ , (39) 

o (_ o_13o).13o (_gO).(V(_~Bgo)) 
cos,pB -- I -  o_13o1113ol I_gOllv~Bgol , (40) 

0 (__ O/0__ 130) , ( a 0  130) (__gO), V[~A(.)__O~B(,)]gO 
cos 'PPRP = I--OL~ 13011 oL~ 13~ -- I-g~ [ v [ ~ a (  �9 ) - ~ B  (")k~ (41) 

where 

f f A = ~ A ( ' ) V  r and ~B=O~B(')V r. 

By employing the relations (36)-(38), the inclination angles associated with the 
point xm are 

., ( - g ~ ) "  ( V ~ A g ' )  
cos CA -- ]--g roll v ~ , , g ' l  ' (42) 

( - g ' ) .  ( v(-f iBgm)) 
coseC-- I-g"llV~Bg'l ' (43) 

m ( _ g i n ) .  T~r[~A(.)__Oj~B(,)]gm 
cos CpRp = ~ I - V ~ ) ~ -  ~ . (44) 

If the operator ~ is a contraction operator (see below), i.e. if 

lim Igml-, 0 (45) 
m --> oo 

then 

m 
COS ~ PRP -'> 0 

m -~.oo 

7 The powers of the operator ~ are defined by successive applications (the zeroth power by the 
unit operator). 
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also holds. Thus for the limits of the cosines of the inclination angles in the 
critical points, we obtain that 

cos q~PRt, = 0 (46) 

and 

m ,~ (47) COS q3 A = COS ~ B .  

From the form of the operator (35) the statements of the "stable limit theorem" 
[7] also follow. Let us decompose the displacement vector so that its one 
component d-  belongs to the one-dimensional sub-space of the eigenvector 
associated with the negative eigenvalue and its other component d § belongs to 
the (n - 1)-dimensional subspace of the eigenvectors associated with the positive 
eigenvalues and thus 

OU 
a = a -  + a + = V [ C a ~ A ( ' ) - -  CB~B (')1 ~ (Xo). (48) 

As follows from the form of Eq. (38), the components of the gradient, at the 
ruth point in the eigenvector space belonging to the positive eigenvalue least in 
absolute sense and to the negative eigenvalue, will vanish in the last place. 
Therefore, in the subspace spanned by these two eigenvectors, the PRP will 
converge to an asymptote along which the inclination angles of the derivative 
and of the derivative components belonging to the groups A and B satisfy the 
relations (46) and (47). When the PRP and the meta-IRC coincide (and therefore 
ds = dg) the Eq. (25), because of the equalities 

d 2 U  d 2 U  d 2 U  
ds2a -- ds~ -'- ds 2'  (49) 

will turn into the equation system (5.2) in Ref. [7]. Consequently, by using the 
equality (46), the direction vector of the asymptote at the critical point in the 
subspace of eigenvectors belonging to the negative eigenvalue h-  and to the 
least positive eigenvalue h +rain is given by the coordinates of the minimum of the 
function 

(~f) = (/~ ~1 q-- }~ +in~2)" ( V [ ~ A  (") -- ~B (")](/~ -~1 +/~ +min~2)) ; 

( f  = 1, 2) 

(50) 

where ~ are the coordinates of the tangent of the asymptote in terms of the two 
eigenvectors. This means that the parameters KA and KB are, as a matter of 
fact, the negative and the least positive eigenvalue, respectively. 

It is also concluded from the above considerations that Eq. (23) is converging 
to an SP and not to any other extrema (nevertheless this SP is not necessarily 
the first order SP interesting from the chemical point of view and therefore the 
determination of the eigenvalues of the hessian is inevitable). The equality (25) 
can not be fulfilled unless the hessian has both positive and negative eigenvalues. 
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3.2. Approximation of the SP in Real  Cases 

In the course of our discussion we have so far adhered to the presumption that 
the classification of coordinates into groups A and B has been properly done. 
Next we examine cases in which the classification of coordinates is improper. 

Returning now to our original assumption: we will only state here that there 
are coordinates which can be ranged properly into the group A and all the 
remaining ones into the group B. Thus group A will at most be incomplete and 
group B will contain also elements improperly ranged. Now we ask whether the 
curve defined by Eq. (23) could reach a critical point under such circumstances 
(it has already been stated that the limit can only be an SP). If the operator  ~t 
defined over a set of vectors, i.e. over a subdomain of the total configuration 
space of the reacting system, is a contraction operator,  i.e. the relation 

p(Ag, 0)-< Ko(g, 0); (K < 1) (51) 

is satisfied 

he r e p  ~ Oq" 
Oq j 

x /  ii OU 

then this condition is satisfactory to get the series of points converging to a 
critical point: 

1 , P = p (./~gO, O) -< Kp(g ~ O) = Kp ~ (52) 
m+l ( ~ m + l g 0 ,  m p =o(~g~', 0) =p 0)_<~p(g , 0)= Km0~g0, 0) 

m 0 
=K p . (53) 

Owing to the condition K < 1, for large values of m, p " ~  0. In such cases also 
p(gm+l, gin) (quite naturally) will converge to zero because of the triangular 
inequality: 

o (o ' ,  p'+l)--- p(g", 0) +p(g "+1, 0) 

=p(gm, 0) + K (g' ,  0)= ~ " (g o, 0) + ..+lfgo, 0) 

= Kin(1 +K)p(g ~ 0). (54) 

The norm of gradient increments form a geometrical series of ratio K : 

p~+1,~+2 p(g,,,+l,g~+2) K, .+I(I+K) 
K (55) pm, m+~ p(gm, gm+l) K m ( I + K )  

and its sum S m will converge to Ig~ 

r n + l  

S m = igO_gal 1 -K_~_ +a --K ig01" (56) 8 ]--K Ig~ 

s S m denotes partial sums. 
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Now we can answer the question whether - when having classified the coordinates 
improper ly- the  SP could be reached at all. We can state that if the operator 

is a contracting one then the PRP will cross the SP. The effect of improper 
classification is manifested only in smaller contractions (larger K values), i.e. in 
a longer path. However, in the close neighbourhood of the SP the improper 
classification of the coordinates can be corrected by defining an operator ~ '  
which provides the maximum of the functional 03, assigning to each point the 
length of the vector 

,n+x ,,, A , g ~ _ g m  ( A , _ l ) g m  g - g  = = (57) 

as 

OU / . ,  OU ~ OU ,~ \ 
(58) 

By the consecutive reclassification of the B group coordinates into the group 
A, the functional o5 will have maximum and the operator ~ ' -  which has been 
constructed by taking into account the classification of coordinates at the 
maximum of the functional-wil l  be optimal over the set of vectors aU/aqi (x )  

in the close neighbourhood of the SP. 

By using approximately proper classification of coordinates the present procedure 
is comparable in convergence speed with most known function minimizing 
procedures [23-31]. 

4. Example 

For sake of simplicity, the procedure is demonstrated on a surface represented 
by a quadratic function of two variables U(r/1, ~72) 9. Let be the eigenvalues of 
the hessian of this function h 1 = - 1  and h 2 = 5, the transformation matrix relating 
the spaces of the orthogonal basis vectors {e 1, e2} or {e ~, e ~ } and the eigenvectors 
{vi} of the hessian: 

or 

Tr = ( - 0 . 7 0 7 1  0.7071~ 
0.7071 0.70711 

= ( - 0 . 8 9 4 4  0.4472~ 
Tv' \ 0.4472 0.89441 

and the coordinates of the SP in the space of {el ')} SP: (1; 1). The coordinates 
e] ') and e~2 ') belong to the group A and B respectively. The points of the PRPs 
starting from various x0 points have been generated by using the formulas (35) 
and (38) and the curves so obtained are displayed on Fig. 1. 

9 The variables of the function U are coordinates represented in the space of basis vectors {el')}. 
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(,) 
e 2 

2.00 

t.oo 

pl( 3; 2.05) 

~ P2 (3; 1.65) 

S P(1;1 ~ ~ ~  

" ~ P o  3 (3; o4s) 

J , , . 
1.00 2.00 3.00 ~'1 

Fig. 1. Pseudo reaction paths (PRPs) approximating the saddle point (SP). For the PRP starting 
from P~o the reference system of basis vectors {et, ea} and for the PRPs starting from pO and pO the 
reference system {e [, e,~} were used 
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